
Running Linux on a Xilinx XUP Board

John H. Kelm

June 23, 2006

Abstract

A tutorial for booting a fully functional operating system based on the Linux 2.4
kernel on a Xilinx University Program Virtex II-Pro based development board is pre-
sented. Furthermore, we describe a reconfigurable hardware accelerator that can be
accessed directly by applications or via a character device driver.

1 Introduction

The Xilinx University Program (XUP) development board provides a rich environment in
which students can gain an understanding of system on a chip (SoC) design, software-
hardware codesign, computer architecture and digital logic design and synthesis. The board
is based on the Xilinx Virtex-II Pro field programmable gate array (FPGA), which has two
embedded PowerPC405 cores in addition to nearly 31,000 logic cells in which to synthesize
the necessary system components and implement the students’ own hardware designs.

Although it is possible to build interesting SoC designs on the XUP board and run them
with free-standing applications, doing so fails to exercise the full capabilities of the board.
It is not only possible to build a fully functioning system on the Virtex-II Pro using one
of the embedded PowerPC cores, but to also run a full-fledged operating system on top of
the reconfigurable hardware. This tutorial describes: synthesizing the hardware necessary
to boot Linux 2.4.26 on the XUP board; how to obtain, configure and compile the kernel
to run on the board; how to boot a fully functioning operating system using the hardware
and kernel developed in the tutorial; and methods for connecting hardware accelerators to
the the XUP board.

To exploit the potential of the XUP board with Linux we have incorporated a motion
estimation hardware accelerator—used for fast encoding of digital movies—to demonstrate
the potential of such a reconfigurable platform. This tutorial steps through the basic pro-
cedure required to build a Block RAM (BRAM) based hardware accelerator that can be
connected to the On-Chip Memory (OCM) bus of the embedded PowerPC 405 core on the
XUP board. Interfacing with the hardware accelerator synthesized in the reconfigurable
logic of the FPGA is covered briefly for direct methods using the mmap() system call. Fur-
thermore, interfacing with the accelerator using a character device driver implementation
under the Linux 2.4 kernel is described.

1

2 Hardware Configuration

Booting Linux on the XUP board requires some familiarity with the Xilinx tool chain. This
tutorial assumes that the reader has already installed the Xilinx Embedded Developers Kit
(EDK), Platform Studio and ISE. The entirety of our work was completed using EDK Ver-
sion 7.1.01i; the methods and advice may or may not apply for other versions.

2.1 Base System Builder

The first step uses the Xilinx wizard—Base System Builder (BSB), a wizard provided in the
EDK that is used to generate a basic hardware configuration on the XUP board—to build
the files and integrate the components necessary to boot Linux on the XUP board. After the
wizard is complete, the system is synthesizable, however unable to boot the Linux kernel;
modifications to the environment created by the BSB must be made. The tutorial cov-
ers the necessary augmentations of the Machine System Settings (MSS) file which contains
high-level configuration data, the Microprocessor Hardware Specification (MHS) file which
provides the non-default mappings for the system components, and the User Constraints
File (UCF) which maps internal wire names to external pins on the chip.

Go to the File menu, select the New Project submenu and select Base System Builder Step 1
. . . menu item. The BSB wizard allows the selection of hardware components to add to the
design. Select a location to place all the files, noting that there must be no spaces in the
file names referenced from within the Xilinx tools. Go to the next menu and select I would
like to create a new design. and continue. Select the board vendor as Xilinx, the board
name as XUP Virtex-II Pro Development System and the board revision as C. The board
definition files may need to be downloaded from Xilinx if not already installed.

In the next menu select PowerPC cores (this tutorial does not make use of the MicroB- Step 2
laze soft cores) and 100 MHz bus and processor clock frequencies. Disable all external
caches by selecting NONE for both On–Chip Memory (OCM) drop–down boxes. Enable
the JTAG interface to the FPGA. The checkbox for Cache has no effect; it enables the
cache from within the stand–alone application template created by the BSB which will not
be used by this tutorial. Proceed to the next window.

Our current designs run the Processor Local Bus (PLB) at 100 MHz and the processor
at 300 MHz, but to keep the tutorial consistent with our original process and to ensure
accuracy 100 MHz clocks are recommended. All external caches are disabled in the initial
design as well. Data caches are not possible if a hardware accelerator is connected via the
Data Side OCM (DSOCM) as described in Section 4.

The following list covers what peripherals are chosen in the next three windows of the Step 3
BSB—all should be interrupt driven except for the DDR memory controller:

• RS232 UART 1 – OPB UART16550, Configure as UART 16550

• Ethernet MAC – PLB ETHERNET, No DMA

2

• SysACE CompactFlash – OPB SYSACE

• DDR 512MB 64Mx64 rank1 row13 col10 cl2 5 – PLB DDR

• PS2 Ports – OPB PS2 DUAL REF

• VGA FrameBuffer – PLB TFT CNTLR REF

All other peripherals are to be disabled.

In the next window select 16KB of BRAM attached to the PLB BRAM controller. At Step 4
least one BRAM must be present in the design for the hardware build system to function
properly. The framebuffer may cause some systems to crash while generating BSPs and
Libraries and may need to be added manually.

The next menus relate to software and do not pertain to the system being built here. Step 5
Disable any related options. Select None as default values for STDIN and STDOUT. Do
not select any of the sample applications. The wizard will now build the system and the
necessary files are generated.

2.2 Configuration

The BSB generates all the necessary files needed to build a functioning SoC on the Virtex-II
Pro. However, the files generated by the BSB are incomplete and the following alterations
must be made.

DDR Clocks Go to the Projects menu, select Add/Edit Cores then select the Param- Step 6
eters tab. Under the dcm 1 entry confirm the following parameters are present. Add any
absent parameter/value pairs listed below:

• C PHASE SHIFT and set its value to “60”

• C CLKOUT PHASE SHIFT and set its value to “FIXED”

Frame Buffer Setup Switch back to the Peripherals tab, add the Digital Control Regis- Step 7
ter (DCR) to On-chip Peripheral Bus (OPB) bridge if it is not already present by selecting
opb2dcr bridge and adding it to the design. Select the Bus Connections tab and add the
dcr v29 v1 00 a IP core to the design; a new column should appear in the left panel. By
clicking on the intersection of each of the following, connect the VGA FrameBuffer sdcr as
the slave on the DCR bus (An “S” should appear at the intersection), the opb2dcr bridge 0
mdcr as master on the DCR, and the opb2dcr bridge 0 sopb as slave on the OPB.

Select the Ports tab, under Internal Port Connections add the SYS dcrClk port from Step 8
the right menu under VGA FrameBuffer. Set the Net Name to sys clk s. Select the Ad-
dresses tab. Generate new addresses, ignoring any warnings referencing ppc405 1. Conflicts
in the automatically generated addresses may arise. Therefore, manually verify that the
base addresses for the the OPB and DCR are unique from other devices listed. Lock all the
addresses to prevent future address generation steps from altering the current configuration.

3

System MSS The following lines (one line per item) must appear in the OS section of Step 9
the system.mss for the design. Make any alterations necessary such that the configuration
section for ppc405 0 matches the values provided here. The file is accessible by double–
clicking on the MSS FILE: system.mss entry in the left–side pane of the EDK.

• OS NAME = linux

• OS VER = 2.00.b – The version has no correlation to the kernel number and may be
irrelevant.

• TARGET DIR = C:/BSP Files – Where the BSP files is created. Note: There must be
no spaces in the name and forward slashes replace backslashes on Windows platforms.

• MEM SIZE = 0x10000000 – The number of bytes of memory attached to the DDR
controller. Shown as 256MB.

• connected periphs = (RS232 UART 1, Ethernet MAC, SysACE CompactFlash, PS2 Ports,
opb intc 0, VGA FrameBuffer) – The names of all connected peripherals to include
when building the BSPs (see Section 3.2.2).

• PLB CLOCK FREQ HZ = 100000000 – The bus frequency in Hz. 100 MHz is used in all
of our systems.

Under the section for the PS/2 Ports:

• DRIVER NAME = ps2 ref – This replaces generic as the driver.

Hardware capable of booting the Linux kernel is now configured. Before proceeding to get Step 10
the kernel source and attempt to compile a kernel image, synthesize the hardware by going
to the Tools menu and selecting the Update Bitstream menu item. Innocuous warnings may
occur, but any errors will immediately stop the build.

The ps2 ref driver must be up to date. Its absence will lead to the following error message:

Driver ps2 ref1.00a does not support peripheral
opb ps2 dual ref. Download the updated cores.

Any errors that stop the build unrelated to the above steps are outside the scope of this
tutorial and answers can be found by consulting the Xilinx documentation (see Appendix A).
Once the bitfile has been created, it can be downloaded to the XUP board. At this point the
bitfile is much like any piece of software—the developer was able to convince it to compile,
but no one knows what bugs lurk in the output. Be warned that even though it builds, the
bitfile may not be correct and debugging the problem may be nontrivial. With any SoC
design, the problem could lay with faulty hardware, a missing or incorrect parameter, an
incomplete design or any of the myriad problems that can manifest in hardware or software
or both.

4

3 Compiling Linux

3.1 The Development Environment

Before a kernel can be generated for the XUP board, a PowerPC development environment
must be created. If a native PowerPC Linux machine is accessible, this section can possibly
be skipped as kernels should be able to build under such an environment without alteration.
For PCs running Linux, a cross-compiling environment is the method used to generate kernel
binaries. Our test environment consists of a VirtualPC 5.3.582.27 installation of Slackware
Linux 10.1 running the 2.6.13 kernel, but any Linux distribution that meets the require-
ments of Crosstool should suffice.

Crosstool (see Appendix A) is a software package created by Dan Kegel that allows x86 Step 11
Linux machines to target the PowerPC405 core of the XUP board. Details on how Crosstool
should be installed are available from the Crosstool website. The script used in our envi-
ronment was demo ppc405.sh and the configuration lines used are as follows:

‘cat powerpc-405.dat gcc-3.4.1-glibc-2.3.3.dat’
sh all.sh --notest

3.2 The Linux Kernel

At this point in the tutorial the cross–compiler must be set up to target the PowerPC 405.
After obtaining the kernel, the Board Support Packages (BSP) for the XUP board must
be created and integrated into the kernel source tree. A list of hand alterations that must
be made in addition to integrating the BSP files is given. A bootable kernel image will be
configured and built with the customized source tree.

3.2.1 Obtaining the Kernel Source

The source tree used is the linuxppc 2 4 devel fork and is available via BitKeeper and can Step 12
be downloaded from http://ppc.bkbits.net. Further instructions on how to download and
install BitKeeper and download the kernel is beyond the scope of this tutorial.

3.2.2 Board Support Packages

Xilinx provides a tool integrated into the EDK that allows the user to generate configuration
and header files necessary to compile the Linux kernel for the ML310 development board.
Many of the options covered here reference the ML310, but work with the XUP board as
well—deviations are noted.

Generate the BSP for the XUP board by entering the Tools menu and selecting the menu Step 13
item Generate Libraries and BSPs. The files are placed in the directory specified in the
system.mss file. Once the BSPs have been generated, copy the BSP directory contents just
created into the kernel source directory obtained above. As can be seen inside the generated
directory, the BSP contains a drivers/ directory with files needed to build Linux device
drivers for the Virtex-II Pro synthesized peripherals and an arch/ directory containing the
necessary configuration files for the particular implementation of the PowerPC 405 core on

5

the Virtex-II Pro.

The main file used by the Linux build system included in the BSP is: Step 14

arch/ppc/platforms/xilinx ocp/xparameters ml300.h

The file contains all the #define’s specific to the implementation described here (e.g., mem-
ory ranges and connected peripherals). To enable the PS/2 ports insert the following two
lines into the file:

#define XPAR PS2 PORTS DEVICE ID 0 0
#define XPAR PS2 PORTS DEVICE ID 1 1

Next edit the Makefile in the top–level directory. Add the following line to the Makefile: Step 15

EXTRA CFLAGS = -I$(TOPDIR)/arch/ppc/platforms/xilinx ocp

Comment out line 708 of arch/ppc/boot/simple/embed config.c. A note is present in the code Step 16
to inform the curious reader. Next add the following line to drivers/net/xilinx enet/xemac.c:

#include "xenv.h"

In the file arch/ppc/boot/simple/Makefile at line 267 change: Step 17

mv zvmlinux ...
to

cp zvmlinux ...

In the file arch/ppc/platforms/xilinx ocp/Makefile remove the references to fifos and replace Step 18
it with the following two values noting that the character is a lower–case ‘L’ not a numeral
one. These references must also be updated in arch/ppc/platforms/xilinx ocp/xilinx syms.c:

xpacket fifo v2 00 a.o
xpacket fifo l v2 00 a.o

In the file drivers/video/xilinxfb.c, add the following line: Step 19

#include "xparameters.h"

In the main Makefile, set the following environment variables: Step 20

ARCH := ppc
CROSS COMPILE := powerpc-405-linux gnu

The kernel source tree should now build without errors.

3.2.3 Configuration

Listed below is the configuration hierarchy for our build of the Linux 2.4 kernel. Other Step 21
options can be enabled, but some may cause the system to not boot or not compile. Execute
make menuconfig and select the following options:

6

Platform Support:
Processor Type: 40X
Machine Type: Xilinx--ML310
Math Emulation
TTY0 device and default console: UART0

General Setup:
PC PS/2 Style Keyboard
Networking Support
Sysctl Support
System V IPC
Default Bootload Commandline:

‘‘console=ttyS0,9600 console=tty1 root=/dev/xsysace/disc0/part3 rw’’
Memory Technology Devices:

MTD Partioning Support
RedBoot partition table parsing
Direct char device access to MTD devices
Caching block device access to MTD devices
RAM/ROM/Flash chip drivers:

Detect flash chips by Common Flash Interface (CFI) probe
Support for AMD/Fujitsu flash chips

Block Devices:
Xilinx On-Chip System ACE
Loopback device support
RAM disk support
Initial RAM disk (initrd) support

Networking:
UNIX domain sockets
TCP/IP Networking

Networking Device Support:
Ethernet 10/100:

Xilinx on-chip ethernet
Console Drivers:

Framebuffer Support:
Xilinx LCD Display support
Select compiled-in fonts
VGA 8x16 Font

Character Devices:
Virtual terminal
Support for console on virtual terminal
Standard/Generic serial support
Support for console serial port
Mice:

Mouse Support
PS/2 Mouse

File systems:

7

Ext3 Journaling file system
DOS FAT fs support
MSDOS fs support
VFAT fs support
/proc file system support
/dev file system support
/dev/pts file system support
Second extended fs support

Test the kernel build. The following command string will allow you to build the kernel and Step 22
view any errors that may occur:

make dep
make zImage 1>build.stdout 2>build.stderr

A new kernel image zImage.elf will be created in arch/ppc/boot/images. This is the com-
pressed kernel image can be used to boot the PowerPC 405 core of the XUP. To get the
system to run, a root file system is still needed (see Section 3.2.4), but the remaining files
from the kernel source tree are no longer required for booting.

For debugging, the uncompressed kernel image with its symbol table intact is in the root
directory for the kernel image named vmlinux. It can be disassembled using the Crosstool
(see Appendix A) version of objdump with the command:

powerpc-405-linux-gnu-objdump -d vmlinux | less

After making changes to the kernel source tree seemingly erroneous errors may occur upon
building the kernel. The kernel build system related to the board support packages was
found to not account for modified files and thus it would not rebuild necessary parts of
the kernel source tree. Often it is necessary to rebuild the whole kernel by executing make
clean and then proceeding with the steps outlined above. Furthermore, to ensure that the
build system takes note of any changes to the BSP, the files located in the include directory
should be given an updated time stamp with the following command line:

touch arch/ppc/platforms/xilinx ocp/*

3.2.4 Root File System

The BYU Linux on FPGA Project page listed in the Appendix provides a step–by–step Step 23
tutorial for generating a root file system on a Compact Flash device. We have elected to
use Yellow Dog Linux and not BusyBox—details regarding how we generated the root file
system will be forthcoming, but are similar to the procedure detailed on the BYU page.

3.2.5 Booting Linux

There are three ways in which to boot the kernel created above on an XUP board: a) using
the XMD debugger from within the EDK, b) by using a boot loader to bootstrap the kernel
directly from a Compact Flash card or micro drive, or c) a network boot. This tutorial

8

covers only the first method, as it leads to expedited debugging and fewer complications.
For information regarding booting from the Compact Flash directly see the BYU FPGA
Project in Appendix A.

To boot the kernel, move it to a location that can be accessed from the EDK. Insert the Step 24
Compact Flash device with the root file system into the Compact Flash slot on the XUP
board, turn on the board, and go to the Tools menu and select XMD to connect to the XUP
board. If the JTAG chain is not correctly configured an error may occur. If XMD is unable
to find a configuration file, place the following line in a file named xmd ppc405 0.opt under
the project directory etc/:

connect ppc hw -cable type xilinx platformusb frequency 12000000

dow c:/YOUR/PATH/TO/zImage.elf

con

Restart the XMD Debugger to connect via the USB cable. Once connected, the script places Step 25
the kernel into memory with the command dow and boots the kernel with the command
con after the kernel is loaded into memory. The XMD window can now be closed. The
kernel boot process can be viewed via HyperTerminal by attaching a serial cable between
the XUP board and to the host WinXP PC. The HyperTerminal connection should match
the setting given at the command line to the kernel which are a 9600 baud connection,
8 data bits, no parity, 1 stop bit, and no flow control. After the kernel is uncompressed
and the framebuffer driver is loaded, the remaining portion of the boot process should be
viewable from a monitor connected to the Sub-D connector of the XUP board. At this point
the reader should have a bootable Linux system running on the XUP board.

4 Attaching an Accelerator

The impetus for enabling Linux to boot on a Virtex-II Pro FPGA is to demonstrate re-
configurable hardware accelerators being accessed from within the context of a standard
operating system to improve performance. Our test accelerator performs motion estimation
for an H.264 video encoder to demonstrate the speed up of a hardware accelerator over a
software–only approach. The method for implementing a hardware accelerator and access-
ing it from the Linux system created in this tutorial is described. Furthermore, we present
two ways in which the accelerator can be interfaced: directly through software and via a
character device driver.

4.1 Implementing a Hardware Accelerator

A complete discussion of implementing a hardware accelerator on the Virtex-II Pro FPGA
running Linux is outside the scope of this tutorial. However, an overview is provided to
motivate interest in designing such accelerators and to provide the information necessary to
access such a device from within the context of the operating system running on the XUP
board.

The motion estimation hardware accelerator used in our studies can be though of a memory–
mapped device in a conventional computing environment. The implementation is realized

9

using Block RAMs (BRAM) in the FPGA fabric and memory mapping them into our design.
The decision was made to attach the device to the Data Side On–Chip Memory (DS-OCM)
bus, however the interface provided by our hardware accelerator should be amenable to
being placed on any of the other buses within the SoC design (e.g., PLB or OPB). The
DS–OCM provides a low latency bus that can have only one device present—in our case,
the hardware accelerator. Details of the OCM bus can be found in the Xilinx reference
documents.

The Virtex-II Pro provides an IP core that handles all bus transactions with the Pow-
erPC 405 core and exports an interface that is meant to attach directly to a BRAM. Our
hardware accelerator maps the signals provided by the BRAM bus connection to BRAM
modules inside the hardware accelerator. The abstraction provided by the BRAM con-
trollers allows the device to reside on any bus, but we have not yet attempted to attach the
accelerator to other buses.

To connect a device to the design created in this tutorial, add a directory for the accel-
erator to the pcores directory at the top level of the project. The newly created directory
must contain another directory hdl/ with vhdl/ and/or verilog/ subdirectories, depend-
ing on the accelerator implementation language. In the pcores/ directory there must be
a data/ directory containing an MPD file, as discussed below. From inside the EDK it is
now possible to add the accelerator to the design by selecting Project followed by the menu
item Add/Edit Cores Select the accelerator design from the list at the right and add it
to the design.

A MicroProcessor Definition (MPD) file must be generated for the device. Add the file
to the pcores/data/ directory under the top–level directory for the accelerator. An exam-
ple file is located in Appendix B.

The DS–OCM BRAM controller must also be added to the design to interface with the
newly added accelerator. Again, go to Project and then to Add/Edit Cores . . . and add the
dsocm if bram core. A memory range must be assigned to the DS-OCM BRAM controller
that will be mapped to the accelerator. Set a memory range by going to the Addresses tab
in the Add/Edit Cores . . . dialog and enter an appropriate range for the device.

Note BRAMs are 2048 bytes in size. Unless the design is performing banking and requires
multiple BRAMs, a 2048 byte range is appropriate.

The BRAM controller must be connected to the hardware accelerator. To do so, open
the system.mhs file by double–clicking on the Open the system.mhs file . . . item of the
left–most pane of the EDK main window. The system should have added an entry based on
the information provided in the MPD file. The DS-BRAM controller must have its PORTA
attached to the accelerator’s PORTA. The mapping provided in the MPD file will reference
the bus interface exported by the DS-OCM BRAM controller and be mapped into the 2 KB
address space specified earlier.

10

Note The Xilinx ISE development tool was used to develop and test the design used in
our studies. ISE may be capable of generating the necessary files listed here, but is beyond
the scope of this tutorial.

4.2 Direct Interface

The first method employed by our group to interface with the motion estimation hardware
accelerator was by using the mmap() system call to map the address space of the accelerator
into an application. The OCM bus presents a slight challenge to the developer in that it
requires the physical and virtual addresses of the memory mapped region to be the same.
From an application the memory mapping can be done with the following code sequence:

int fd;
unsigned int *bram;

fd = open("/dev/mem", O RDWR);
bram = mmap(0x40000000, 2048, PROT READ

| PROT WRITE, MAP SHARED, fd, 0x40000000);
assert(bram == 0x40000000);

The pointer bram can now be accessed (i.e., indexed via the [] operator) like an array.
Note that the code must be run as root user. The mmap() system call may return a different
virtual address from the one specified (i.e., the virtual address that matches the physical ad-
dress 0x40000000), and therefore an assertion is placed to ensure that an erroneous mapping
does not occur.

4.3 Device Driver Interface

An in–depth description of the character device driver used to interface with the hardware
accelerator is beyond the scope of this tutorial. However, a brief overview of the necessary
components for generating a skeleton driver for a BRAM–based hardware accelerator will
be presented. At a high level the driver can be thought to reimplement a reduced overhead
version of the mmap() system call. The following is an outline of the steps to generate the
driver:

1. Obtain the memory map semaphore for the current process (i.e., current->mm->mmap sem)
at open(). The driver must insert a new virtual memory area (VMA) for the memory
mapped range.

2. Make a call to get unmapped area with the assigned address and range for the device
as specified in the Addresses tab of the the Add/Edit Cores . . . dialog with the flag
MAP SHARED.

3. Allocate and initialized the VMA for the area—for reference the reader can look at the
do mmap() kernel function. The pages must be marked VM SHARED and VM RESERVED
along with any other flags relevant to the reader’s design.

11

4. Now that an area of virtual memory with the proper characteristics for the device has
been allocated to the driver instance, a call must be made to remap page range() to
build the page tables.

Note Both addresses and offsets must be equivalent for OCM–based BRAM hard-
ware accelerators in the call to remap page range().

5. Insert and enable access to the newly created vma using insert vma struct() and
then call make pages present().

At this point the user is now able to directly access the memory mapped into the accelerator
from user space. It may be desirable to alter the permissions on the pages so that the user
does not have access to them while the driver is functioning for safety and correctness. The
semantics chosen for interacting with the device are application specific. For our model,
we chose to create mutually exclusive accesses between write()’s to the device for placing
blocks of video frames into the device’s memory and read()’s to access the motion vector
when completed. To signal completion, the device could use interrupts, but our initial model
simply polls the device, which toggles a value in the BRAM when completed. Timeouts were
also added to ensure liveness in the event of process failure.

12

APPENDIX

A Reference Websites

1. Crosstool
http://www.kegel.com/crosstool

2. Xilinx PowerPC405 Block Reference Manual
http://www.xilinx.com/bvdocs/userguides/ug018.pdf

3. BYU Linux on FPGA Project
http://splish.ee.byu.edu/projects/LinuxFPGA/index.htm

B Example MPD File

BEGIN mpeg4 me
OPTION IPTYPE = PERIPHERAL
OPTION IMP NETLIST = TRUE
OPTION HDL = VHDL
OPTION SIM MODELS = BEHAVIORAL : STRUCTURAL
OPTION CORE STATE = ACTIVE
OPTION IP GROUP = LOGICORE
OPTION ARCH SUPPORT = virtex2p

BUS INTERFACE BUS = PORTA, BUS STD = TRANSPARENT, BUS TYPE = UNDEF

PARAMETER C MEMSIZE = 2048, DT = integer
PARAMETER C PORT DWIDTH = 32, DT = integer, BUS = PORTA
PARAMETER C PORT AWIDTH = 32, DT = integer, BUS = PORTA
PARAMETER C NUM WE = 4, DT = integer
PARAMETER C FAMILY = virtex2, DT = string
PARAMETER DWIDTH = 32, DT = integer
PARAMETER AWIDTH = 9, DT = integer

PORT MPG ADDRA = BRAM Addr, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = PORTA
PORT MPG CLK = plb clk, DIR = IPORT MPG CLKA = BRAM Clk, DIR = I, BUS = PORTA
PORT MPG DIA = BRAM Dout, DIR = I, VEC = [31:0], ENDIAN = LITTLE, BUS = PORTA
PORT MPG ENA = BRAM EN, DIR = I, BUS = PORTA
PORT MPG RESET = sys rst, DIR = IPORT MPG SSRA = BRAM Rst, DIR = I, BUS = PORTA
PORT MPG WEA = BRAM WEN, DIR = I, VEC = [3:0], ENDIAN = LITTLE, BUS = PORTA
PORT MPG DOA = BRAM Din, DIR = O, VEC = [31:0], ENDIAN = LITTLE, BUS = PORTA

END

13

